Search results for "Ammonia borane"
showing 5 items of 5 documents
Ab initio molecular orbital study of the substituent effect on ammonia and phosphine–borane complexes
2004
Abstract The complexation energies of H 3 BXH 3− n F n ( X =N, P; n =0–3) and the proton affinities of XH 3– n F n compounds have been investigated at the G2(MP2) level of theory. The G2(MP2) results show that the phosphine complexes are more stable than the corresponding ammonia ones. Increasing fluorine substitution on nitrogen atom reduces both the basicity of NH 3− n F n and the stability of ammonia complexes. For the phosphine complexes, the successive fluorine substitution on the phosphine increase the stability of H 3 BPH 3− n F n complexes although the reduction of the basicity of the PH 3– n F n ligands with this substitution. The NBO partitioning scheme shows that the stability of…
Substituent effect on ammonia–borane donor–acceptor complexes: a G2(MP2) molecular orbital study
1998
Abstract H3BNHnMe3−n and Me3−nHnBNH3 (n=0–3) donor–acceptor complexes have been studied using the G2(MP2) method. Predicted equilibrium structures and dissociation energies have been correlated to the degree of substitution on the donor and the acceptor separately. It is found that successive methyl substitutions on boron reduce the dissociation energies of the complexes, contrary to the successive substitutions on nitrogen. The NBO partitioning scheme suggests that there is no correlation between the charge transfer and the dissociation energies. These results are interpreted in terms of the changes in the HOMO−LUMO gap, the type of acceptor and donor involved, and distortion of the accept…
The Hydrogen‐Storage Challenge: Nanoparticles for Metal‐Catalyzed Ammonia Borane Dehydrogenation
2021
International audience; Dihydrogen is one of the sustainable energy vectors envisioned for the future. However, the rapidly reversible and secure storage of large quantities of hydrogen is still a technological and scientific challenge. In this context, this review proposes a recent state-of-the-art on H 2 production capacities from the dehydrogenation reaction of ammonia borane (and selected related amine-boranes) as a safer solid-source of H 2 by hydrolysis (or solvolysis), according to the different developed nanoparticle-based catalysts. The review groups the results according to the transition metals constituting the catalyst according a special view to current cost/availability consid…
A G2(MP2) theoretical study of substituent effects on H3BNHnCl3−n (n= 3-0) donor-acceptor complexes
2008
Abstract The complexation energies of H3BNHnCl3−n (n= 3-0) complexes and the proton affinities of NHnCl3−n compounds have been computed at the G2(MP2) level of theory. G2(MP2) results show that the successive chlorine substitution on the ammonia decreases both the basicity of the NHnCl3−n ligands and the stability of H3BNHnCl3−n complexes. The findings are interpreted in terms of the rehybridisation of the nitrogen lone-pair orbital. The NBO partitioning scheme shows that the variation of the N-H and N-Cl bond lengths, upon complexation, is due to variation of “s” character in these bonds.
Characterization of β-B-Agostic Isomers in Zirconocene Amidoborane Complexes
2009
The reaction of Cp(x)(2)ZrCl(2) (Cp(x) = Cp, Cp*) with ammonia borane in presence of n-butyllithium yielded Cp(2)Zr(Cl)NH(2)BH(3) and Cp(x)(2)Zr(H)NH(2)BH(3). These derivatives are isoelectronic with the ethyl zirconocene chloride and hydride, respectively, and feature a chelating amidoborane ligand coordinating through a Zr-N bond and a Zr-H-B bridge. In solution, each of the complexes consists of an equilibrium mixture of two isomers differing in the orientation of the amidoborane ligand with respect to the Zr-X bond (X = H, Cl), while in the solid state, only one isomer was observed. Such isomers have not been characterized for any metal complexes containing the isoelectronic beta-agosti…